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1 The Spectrum and The Spectral Radius

1.1 The spectrum of an element

Let A be a Banach algebra with identity 1. Recall that if ‖a− 1‖ < 1, then a−1 exists and
equals

∑
k≥0(1− a)k. The spectrum of a is σ(a) = {z ∈ F : z − a is not invertible in A}

(and similarly for right/left spectrum σr, σ`). The resolvent is ρ(a) = F \ σ(a).

Example 1.1. Let X be a compact, Hausdorff space. If f ∈ C(X), then σ(f) = f [X].

Example 1.2. Let X be a Banach space, and let A ∈ B(X). Then

σ(A) = {λ ∈ F : A− λ is not a bijection X → X},

σ(A) = {λ ∈ F : inf{‖(A− λ)x : ‖x‖ = 1} = 0}.

Example 1.3. If F = R, we can have elements with empty spectrum. For example, take[
0 −1
1 0

]
∈M2(R).

If we take this as an element in M2(C), the spectrum is nonempty. So the spectrum depends
on the space the element is sitting in.

Theorem 1.1. If F = C and a ∈ A , then σ(a) is a nonempty, compact subset of {z ∈ C :
|z| ≤ ‖a‖}.

Proof. Consider z − a = z(1 − a/z). If |z| > ‖a‖, then ‖a/z‖ < 1. Then (z − a)−1 =
1
z (1− a

z )−1 exists. This tells us that σ(a) ⊆ {z ∈ C : |z| ≤ ‖a‖}.
Also ρ(a) = g−1({invertible elements}), where g(z) = z − a is continuous. Since the

invertible elements form an open set, we have ρ(a) is open. So σ(a) is closed and bounded.
Consider the resolvent function f : ρ(a)→ A by z 7→ (z−a)−1. This is a continuous

map from ρ(a)→ {invertible elements in A }. If |z| > ‖a‖, then

f(z) =
1

z

(
1− a

z

)−1
=

1

z

∑
k≥0

ak

zk
,
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so we can get

‖f(z)‖ ≤ 1

|z|
∑
k≥0

‖a‖k

|z|k
= O(1/|z|) as |z| → ∞.

If z ∈ ρ(a), then
f(z + h) + f(z)

h

h→0−−−→ ((z − a)−1)2

(proven below). So we can say “f is holomorphic on ρ(a).”1

This shows that if σ(a) = ∅, then f is a holomorphic and bounded function. By a
version of Liouville’s theorem (proven below), f is constant. So f = 0. But this is a
contradiction.

Lemma 1.1. If z ∈ ρ(a), then

f(z + h) + f(z)

h

h→0−−−→ ((z − a)−1)2.

Proof. If , y ∈ A are invertible, then

x−1 − y−1 = x−1yy−1− x−1xy−1

= xx−1(y − x)y−1.

This is called the resolvent identity. So

1

h
[(z + h− a)−1 − (z − a)−1] = (z + h− a)−1(z − a)−1

h→0−−−→ ((z − a)−1)2.

Lemma 1.2 (Liouville’s theorem for Banach-valued holomorphic functions). Let X be a
Banach space. If f : C→ X is holomorphic and bounded, it is constant.

Proof. For any ϕ ∈ X∗, ϕ ◦ f : C→ C is holomorphic and bounded, so it is constant.

This trick is a common way to transfer results from complex-valued holomorphic func-
tions to Banach-valued ones.

1.2 Spectral radius

Definition 1.1. Let a ∈ A . The spectral radius of a is r(a) := sup{|z| : z ∈ σ(a)}.
1This is a notion of holomorphic functions that take values in a Banach algebra.
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Example 1.4. In M2(C), let

a =

[
0 0
1 0

]
.

Then a2 = 0, so σ(a) = {0}. So the spectrum of a is nonempty, but it has zero spectral
radius.

Theorem 1.2 (spectral radius formula). Let a ∈ A . Then

r(a) = lim
n→∞

‖an‖1/n.

Remark 1.1. Since the norm is submultiplicative, this is ≤ ‖am‖1/m for any m. So this
equals infn ‖an‖1/n.

Proof. (≤): We know that r(a) ≤ ‖a‖. We claim that σ(am) = {zm : z ∈ σ(a)}.2 If
λ ∈ C, then am − λ =

∏m
i=1(a − ωi), where the ωi are the m-th roots of λ. Since each

a − ωi is invertible, am − λ is invertible. If am − λ is invertible, then (a − ω1)−1 =∏m
i=2(a− ωi)(am − λ)−1. This proves the claim and gives us r(am) = r(a)m for any m. So

r(a) = r(am)1/m ≤ ‖am‖1/m for all m.
(≥): Let h(w) = ( 1

w − a)−1 for w such that 1
w ∈ ρ(a). Extend this so h(0) = 0. As

before,

h(w) = w
∑
k≥0

wkak ∀|w| < ‖a‖−1,

and h is holomorphic on {0} ∪ {1
z : z ∈ ρ(a)}. Now we use a fact from complex analysis

(which extends to this case): By Hadamard’s formula for the radius of convergence of a
series, the supremal R such that h has a holomorphic extension to the ball BC(0, R) equals
the radius of convergence of the series; this is limn 1/‖an‖1/n. So inf{1/|z| : z ∈ σ(a)} =
limn 1/‖an‖1/n.

Remark 1.2. Here is another way to show that the sequence converges. We have ‖an+m‖ ≤
‖an‖ · ‖am‖, so log ‖an+m‖ ≤ log ‖an‖+ log ‖am‖. Now use Fekete’s subadditive lemma.

Example 1.5. For f ∈ L2([0, 1]), the Volterra operator is

V f(x) =

∫ x

0
f =

∫ 1

0
1{y≤x}f(y) dy.

Then σ(V ) = {0}, so r(V ) = 0.

Proposition 1.1. If z ∈ ρ(a), then ‖(z−a)−1‖ ≥ 1
dist(z,σ(a)) . In other words, dist(z, σ(a)) ≥

1/‖(z − a)−1‖.
2This is a special case of the spectral mapping theorem, which we will discuss later.
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If z is in the spectrum, (z − a)−1 doesn’t exist. This says that if z is close to the
spectrum, then this blows up.

Proof. If h ∈ C with |h| < 1
‖(z−a)−1‖ , then

z + h− a = (z − a)(h(z − a)−1 + 1)

is invertible. So B(z, 1/‖(z − a)−1‖) ⊆ ρ(a).

1.3 Riesz functional calculus

Here is a teaser for what we will discuss next time.
If a ∈ A , then the resolvent map f : ρ(a) 7→ A takes z 7→ (z− a)−1. Any holomorphic

f : G → A satisfies Cauchy’s integral formula. As a result, if G is an open subset of C
with G ⊇ σ(a), then let Γ = γ1 ∪ · · · ∪ γm wind once around any z ∈ σ(a) and 0 times
around any z ∈ C \G. Then if f : G→ C is holomorphic, define

f(a) =
1

2πi

∫
Γ
f(z)(z − a)−1 dz ∈ A .

This allows us to produce more elements of our Banach algebra.
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