Math 255A' Lecture 26 Notes

Daniel Raban

December 2, 2019

1 The Spectrum and The Spectral Radius

1.1 The spectrum of an element

Let \mathscr{A} be a Banach algebra with identity 1. Recall that if ||a-1|| < 1, then a^{-1} exists and equals $\sum_{k\geq 0}(1-a)^k$. The **spectrum** of a is $\sigma(a) = \{z \in \mathbb{F} : z-a \text{ is not invertible in } \mathcal{A}\}$ (and similarly for right/left spectrum σ_r, σ_ℓ). The **resolvent** is $\rho(a) = \mathbb{F} \setminus \sigma(a)$.

Example 1.1. Let X be a compact, Hausdorff space. If $f \in C(X)$, then $\sigma(f) = f[X]$.

Example 1.2. Let X be a Banach space, and let $A \in \mathcal{B}(X)$. Then

$$\sigma(A) = \{\lambda \in \mathbb{F} : A - \lambda \text{ is not a bijection } X \to X\},\$$

$$\sigma(A) = \{ \lambda \in \mathbb{F} : \inf\{ \| (A - \lambda)x : \|x\| = 1 \} = 0 \}.$$

Example 1.3. If $\mathbb{F} = \mathbb{R}$, we can have elements with empty spectrum. For example, take

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in M_2(\mathbb{R})$$

If we take this as an element in $M_2(\mathbb{C})$, the spectrum is nonempty. So the spectrum depends on the space the element is sitting in.

Theorem 1.1. If $\mathbb{F} = \mathbb{C}$ and $a \in \mathscr{A}$, then $\sigma(a)$ is a nonempty, compact subset of $\{z \in \mathbb{C} : |z| \leq ||a||\}$.

Proof. Consider z - a = z(1 - a/z). If |z| > ||a||, then ||a/z|| < 1. Then $(z - a)^{-1} = \frac{1}{z}(1 - \frac{a}{z})^{-1}$ exists. This tells us that $\sigma(a) \subseteq \{z \in \mathbb{C} : |z| \le ||a||\}$.

Also $\rho(a) = g^{-1}(\{\text{invertible elements}\})$, where g(z) = z - a is continuous. Since the invertible elements form an open set, we have $\rho(a)$ is open. So $\sigma(a)$ is closed and bounded.

Consider the **resolvent function** $f : \rho(a) \to \mathscr{A}$ by $z \mapsto (z-a)^{-1}$. This is a continuous map from $\rho(a) \to \{\text{invertible elements in } \mathscr{A}\}$. If |z| > ||a||, then

$$f(z) = \frac{1}{z} \left(1 - \frac{a}{z} \right)^{-1} = \frac{1}{z} \sum_{k \ge 0} \frac{a^k}{z^k},$$

so we can get

$$\|f(z)\| \leq \frac{1}{|z|} \sum_{k \geq 0} \frac{\|a\|^k}{|z|^k} = O(1/|z|) \qquad \text{as } |z| \to \infty.$$

If $z \in \rho(a)$, then

$$\frac{f(z+h) + f(z)}{h} \xrightarrow{h \to 0} ((z-a)^{-1})^2$$

(proven below). So we can say "f is holomorphic on $\rho(a)$."¹

This shows that if $\sigma(a) = \emptyset$, then f is a holomorphic and bounded function. By a version of Liouville's theorem (proven below), f is constant. So f = 0. But this is a contradiction.

Lemma 1.1. If $z \in \rho(a)$, then

$$\frac{f(z+h) + f(z)}{h} \xrightarrow{h \to 0} ((z-a)^{-1})^2.$$

Proof. If $y \in \mathscr{A}$ are invertible, then

$$x^{-1} - y^{-1} = x^{-1}yy - 1 - x^{-1}xy^{-1}$$
$$= xx^{-1}(y - x)y^{-1}.$$

This is called the **resolvent identity**. So

$$\frac{1}{h}[(z+h-a)^{-1} - (z-a)^{-1}] = (z+h-a)^{-1}(z-a)^{-1}$$
$$\xrightarrow{h\to 0} ((z-a)^{-1})^2.$$

Lemma 1.2 (Liouville's theorem for Banach-valued holomorphic functions). Let X be a Banach space. If $f : \mathbb{C} \to X$ is holomorphic and bounded, it is constant.

Proof. For any $\varphi \in X^*$, $\varphi \circ f : \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded, so it is constant. \Box

This trick is a common way to transfer results from complex-valued holomorphic functions to Banach-valued ones.

1.2 Spectral radius

Definition 1.1. Let $a \in \mathscr{A}$. The spectral radius of a is $r(a) := \sup\{|z| : z \in \sigma(a)\}$.

¹This is a notion of holomorphic functions that take values in a Banach algebra.

Example 1.4. In $M_2(\mathbb{C})$, let

$$a = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Then $a^2 = 0$, so $\sigma(a) = \{0\}$. So the spectrum of a is nonempty, but it has zero spectral radius.

Theorem 1.2 (spectral radius formula). Let $a \in \mathscr{A}$. Then

$$r(a) = \lim_{n \to \infty} \|a^n\|^{1/n}.$$

Remark 1.1. Since the norm is submultiplicative, this is $\leq ||a^m||^{1/m}$ for any m. So this equals $\inf_n ||a^n||^{1/n}$.

Proof. (\leq): We know that $r(a) \leq ||a||$. We claim that $\sigma(a^m) = \{z^m : z \in \sigma(a)\}$.² If $\lambda \in \mathbb{C}$, then $a^m - \lambda = \prod_{i=1}^m (a - \omega_i)$, where the ω_i are the *m*-th roots of λ . Since each $a - \omega_i$ is invertible, $a^m - \lambda$ is invertible. If $a^m - \lambda$ is invertible, then $(a - \omega_1)^{-1} = \prod_{i=2}^m (a - \omega_i)(a^m - \lambda)^{-1}$. This proves the claim and gives us $r(a^m) = r(a)^m$ for any *m*. So $r(a) = r(a^m)^{1/m} \leq ||a^m||^{1/m}$ for all *m*.

 (\geq) : Let $h(w) = (\frac{1}{w} - a)^{-1}$ for w such that $\frac{1}{w} \in \rho(a)$. Extend this so h(0) = 0. As before,

$$h(w) = w \sum_{k \ge 0} w^k a^k \qquad \forall |w| < \|a\|^{-1},$$

and h is holomorphic on $\{0\} \cup \{\frac{1}{z} : z \in \rho(a)\}$. Now we use a fact from complex analysis (which extends to this case): By Hadamard's formula for the radius of convergence of a series, the supremal R such that h has a holomorphic extension to the ball $B_{\mathbb{C}}(0, R)$ equals the radius of convergence of the series; this is $\lim_{n} 1/||a^n||^{1/n}$. So $\inf\{1/|z| : z \in \sigma(a)\} = \lim_{n} 1/||a^n||^{1/n}$.

Remark 1.2. Here is another way to show that the sequence converges. We have $||a^{n+m}|| \le ||a^n|| \cdot ||a^m||$, so $\log ||a^{n+m}|| \le \log ||a^n|| + \log ||a^m||$. Now use Fekete's subadditive lemma.

Example 1.5. For $f \in L^2([0,1])$, the Volterra operator is

$$Vf(x) = \int_0^x f(x) = \int_0^1 \mathbb{1}_{\{y \le x\}} f(y) \, dy$$

Then $\sigma(V) = \{0\}$, so r(V) = 0.

Proposition 1.1. If $z \in \rho(a)$, then $||(z-a)^{-1}|| \ge \frac{1}{\text{dist}(z,\sigma(a))}$. In other words, $\text{dist}(z,\sigma(a)) \ge 1/||(z-a)^{-1}||$.

²This is a special case of the spectral mapping theorem, which we will discuss later.

If z is in the spectrum, $(z - a)^{-1}$ doesn't exist. This says that if z is close to the spectrum, then this blows up.

Proof. If $h \in \mathbb{C}$ with $|h| < \frac{1}{\|(z-a)^{-1}\|}$, then

$$z + h - a = (z - a)(h(z - a)^{-1} + 1)$$

is invertible. So $B(z, 1/\|(z-a)^{-1}\|) \subseteq \rho(a)$.

1.3 Riesz functional calculus

Here is a teaser for what we will discuss next time.

If $a \in \mathscr{A}$, then the resolvent map $f : \rho(a) \mapsto \mathscr{A}$ takes $z \mapsto (z-a)^{-1}$. Any holomorphic $f : G \to \mathscr{A}$ satisfies Cauchy's integral formula. As a result, if G is an open subset of \mathbb{C} with $G \supseteq \sigma(a)$, then let $\Gamma = \gamma_1 \cup \cdots \cup \gamma_m$ wind once around any $z \in \sigma(a)$ and 0 times around any $z \in \mathbb{C} \setminus G$. Then if $f : G \to \mathbb{C}$ is holomorphic, define

$$f(a) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(z-a)^{-1} dz \in \mathscr{A}.$$

This allows us to produce more elements of our Banach algebra.